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Abstract. We present an analytic real-space renormalization group calculation for the random-
field Ising model. We apply the Migdal–Kadanoff approximation for the renormalization of
a cubic cell in dimensionsd, introducing a new field partitioning scheme which allows us to
treat the random-field fluctuations in a coherent manner. Our scheme leads naturally to a lower
critical dimensionalitydl = 2 and allows us to calculate a complete set of three independent
exponents in arbitrary dimension. In three dimensions the magnetization exponentβ ≈ 0.02
and the Schwartz–Soffer inequality is almost satisfied as an equality. We expand analytically in
ε = d−2. Further, we show thatβ and the magnitude of the inequality go to zero exponentially
with 1/ε2. We calculate the crossover exponent,φ from pure to the random-field system
and find surprisingly good agreement with experimental values. We find thatφ satisfies the
Schwartz–Soffer inequality:φ > γ0, the susceptibility exponent of the pure system. We expand
in ε = d − 1 and find that the magnitude of the inequality varies exponentially in 1/ε. Finally
we find that dimensional reduction is satisfied to first order inε, with the reduced dimension
d ′ = d/2.

1. Introduction

The random-field Ising model (RFIM) is one of a number of model disordered systems that
has been intensively studied over the last two decades (for reviews see, for example [1–3]).
After much confusion a coherent picture of its behaviour is finally emerging.

The model is defined with the Hamiltonian

H = −J
∑
〈i,j〉

SiSj −
∑
i

hiSi Si = ±1 (1)

whereJ is a ferromagnetic coupling constant (J > 0) andhi is a random field at sitei
which we take to have a Gaussian distribution

P(hi) =
√

1

2πh2
exp

(
(hi − h0)

2

2h2

)
(2)

with mean valueh0 and varianceh. In the following discussionh0 is taken to be zero.
For a long time the main discussion centred around the value of the lower critical

dimension and the very existence of a phase transition in a physically realizable system.
The physical argument of Imry and Ma [4] in which the energy of a domain of sizeL is
minimized with respect to the wall energy, varying asLd−1, and the random-field energy
varying asLd/2, givesdl = 2.
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Alternatively, a number of calculations based on series expansions of the free energy
[5–7] exposed a correspondence between the random field model in dimensiond and a pure
Ising system in dimensiond − 2. This result, known as ‘dimensional reduction’, therefore
gives dl = 3 and no finite temperature phase transition in three dimensions. This result
holds to all orders in the perturbation and appears to be rigorous. It was therefore perhaps
surprising to find convincing evidence of a transition from experimental realizations of the
RFIM [8] such as the diluted antiferromagnet FexZn1−xCl2 in magnetic field [9]. Subsequent
exact calculations showed that, for weak random fields, a magnetic phase is stable at
low temperatures [11, 12]. Numerical work confirmed the similarity between the diluted
antiferromagnets and the RFIM [13, 14] and it therefore rapidly became clear that there is
indeed a phase transition in three dimensions. Interest then passed, first to explaining why
the perturbation calculation is wrong and subsequently onto the details of the transition itself.

An explanation for these conflicting results lies in the apparition of metastable states in
the region of the transition and the development of a complex free energy surface for which
there is experimental [15], theoretical [16–18] and numerical [13, 19] evidence. Villain
[17] and Fisher [18] argued that in the critical region, the domain walls are not free to
meander continuously and without constraint over the sample. Rather, the random field
disorder constrains the domain walls to particular regions of space giving discrete preferred
paths. The discrete paths are separated by free energy barriers, which lead to domain wall
pinning, metastable domain wall configurations and exponentially long relaxation times.
The starting point for the perturbation calculations assumes a single minimum about which
the expansion of the free energy is made. If many minima exist, each should be taken into
consideration [17, 20]. The calculation of the correct Boltzmann weights for these minima
is not, at present, a feasible problem.

The complex structure of the free energy appears therefore to stabilize the magnetic
phase in three dimensions. It makes it, however, very difficult to measure details of
the transition as the exponentially long timescales guarantee loss of ergodicity and non-
equilibrium, or glassy behaviour, as one enters the critical region. The same problems arise
in numerical work [21], while in theoretical approaches the difficulty is found in averaging
correctly over the disorder. Despite these problems there is now a growing body of work
offering a coherent picture of the transition. It predicts it to be second order, driven almost
first order by the configurational disorder of the random fields.

In this paper we present an analytic real-space renormalization-group calculation using
the Migdal–Kadanoff technique which gives further weight to this picture. We present a new
series of approximations that allow us to deal with the random-field disorder in a consistent
manner, without recourse to the use of replicas. A preliminary account of this work can be
found in [22].

On renormalizing the length scale of the problem, the flow, in variablesτ = 1/K = T/J
and ω = h/J are dominated by the ‘random-field’ or ‘zero-temperature’ fixed point at
τ = 0, ω = ωc, as shown schematically in figure 1. The zero-temperature fixed point is a
direct consequence of the metastability: the system becomes frozen by the random fields
with the result that the critical fluctuations in the system are due to the configurational
disorder of the random fields rather than thermal fluctuations [18]. It is the reason why
temperature,T , is an irrelevant variable in the renormalization of the RFIM [24].

Close to the fixed point the renormalization equations for a change of scaleb take the
form

(h0/T )
′ = bx(h0/T ) τ ′ = b−yτ δω′ = bzδω

δω = ω − ωc
(3)
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Figure 1. Schematic flow diagram for the RFIM ford > dl . F marks the ferromagnetic phase
andP marks the paramagnetic phase.

with x, y andz all positive. At this point the divergent part of the free energy and correlation
length should take the form [24]

E = Jf (δω, h0/J )

ξ = ξ(δω, h0/J ).
(4)

At first sight one might therefore expect just two independent exponents. However,J

changes with length scale at the fixed point and thereforex, y, z are all implicated, despite
the temperature being irrelevant [23]: the rescaled quantities are

E′ = Ebd = byJf (bzδω, bx−yh0/J )

ξ ′ = ξb−1 = ξ(bzδω, bx−yh0/J ).
(5)

An open question is therefore: are the three exponents independent? The supplementary
exponent results physically from a divergence in the susceptibility which is particular to a
zero-temperature fixed point: in reciprocal space, at small wave vector, the susceptibility at
the transition has the form

χ(q) = [〈SqS−q〉 − 〈Sq〉〈S−q〉] ∼ 1/q2−η (6)

where Sq is a spin at wave vectorq, 〈. . .〉 represents a thermal average, and [. . .] a
configurational average over the disorder. In the pure system, where the driving force
is the thermal fluctuations,〈Sq〉 = 0 at TC , but here at the zero-temperature fixed point
the correlations are frozen in by the disorder and both terms in the expression for the
susceptibility are divergent. In fact they are more divergent than the difference between
them [2, 23] and one must define a disconnected susceptibility

χdis(q) = [〈Sq〉〈S−q〉] ∼ 1/q4−η (7)

with exponentη. If η andη are independent then there is a third exponent which comes
from the remnants of thermal fluctuations and temperature plays the role of a dangerously
irrelevant variable [25]. Following the scaling relations for the RFIM (section 3), an effective
dimension can be definedd ′ = d − 2+ θ = d − y with θ = η − η.

One can deduce limits for the value of the third exponent from the exact Schwartz–
Soffer inequality [26]:η 6 2η and the result corresponding to dimensional reduction:η = η
[27]. These two extremes are therefore both consistent with two-parameter scaling. The
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most reliable information concerning quantitative values comes from high-temperature series
expansions [28], where to 15th order in 1/T ones finds the inequality to hold as an equality,
η = 2η, indicating that there could, after all, only be two independent exponents. However,
this is not entirely consistent with the results of Mézard and Young [27], who investigated
the question of replica symmetry breaking. The existence of metastable states and the
associated complex free energy brings to mind the multivalley free energy structure of replica
symmetry breaking in spin glasses [20]. Within a self-consistent screening approximation
and an expansion in 1/m, wherem is the number of spin components (m = 1 for the Ising
model), they show that the dimensional reduction resultd ′ = d−2, η = η corresponds to a
replica-symmetric solution, which is unstable at the transition. They show further that the
stable solution has broken replica symmetry and predictη− 2η < 0, with values lying in a
narrow range close to zero, but which they are unable to calculate. Other methods suggest
that [13, 19], as the correlation length diverges, the spin structures pinned by the disorder
become macroscopically large, while at the same time the transition rate between them falls
to zero [29]. From this one could conclude that the large scale and ‘frozen’ spin structures,
which occur in the region of the transition, translate to true replica symmetry breaking as
one approachesTC .

In the next section we present our one-dimensional decimation procedure and the
Migdal–Kadanoff procedure that allows us to move to higher dimension. In section 3
we present our results in three dimensions. We compare our findings, first with other
renormalization procedures and then with experimental and numerical results. In section 4
we expand analytically inε = d−2 and find that bothη−2η andβ tend to zero exponentially
with 1/ε2. In section 5 we discuss the crossover from pure to random field behaviour for
weak disorder and calculate the crossover exponentφ in arbitrary dimension. We are able
to compare this favourably with experimental results in three dimensions. Finally, we
give some discussion of our results in section 6. Further details of the Migdal–Kadanoff
procedure can be found in the appendices.

2. Migdal–Kadanoff renormalization

We begin with a decimation procedure for a one-dimensional chain, which we then
generalize to dimensions-d using the Migdal–Kadanoff approximation. Throughout we
take the microscopic lattice constant to be unity. Evaluating the trace over alternate spins
on anN spin chain, the relevant part of the new partition function for anN/2 spin chain
can be expressed in the form

Zi−1,i+1 = δ expβ[J ′i−1,i+1Si−1Si+1+ h′i−1Si−1+ h′i+1Si+1] (8)

whereβ = 1/kBT andδ is a constant. The transformations forJ ′i−1,i+1 andh′i in terms of
the initial variables are given by

J ′i−1,i+1 =
1

4β
log

(
coshβ(Ji−1,i + Ji,i+1+ hi) coshβ(Ji−1,i + Ji,i+1− hi)

coshβ(−Ji−1,i + Ji,i+1+ hi) coshβ(Ji−1,i − Ji,i+1+ hi)
)

h′i+1 = hi+1+Hi+1,−1+Hi+1,+1

Hi+1,σ = 1

4β
log

(
coshβ(Ji+1,i+1+σ + Ji+1+σ,i+1+2σ + hi+1+σ )
coshβ(Ji+1,i+1+σ + Ji+1+σ,i+1+2σ − hi+1+σ )

)
+ 1

4β
log

(
coshβ(Ji+1,i+1+σ − Ji+1+σ,i+1+2σ + hi+1+σ )

coshβ(−Ji+1,i+1+σ + Ji+1+σ,i+1+2σ + hi+1+σ )

)
.

(9)

The transformation does not maintain the initial conditions and after a single iteration the
initially constant exchange parameters develop random components. The fieldhi on the
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decimated site is shared between sitesi ± 1 in the new space throughHi±1,±1 andJ ′i−1,i+1

which introduces correlations between fields:h′i−1h
′
i+1 6= 0 and between the new bonds and

fields: h′i−1J
′
i−1,i+1h

′
i+1 6= 0 [31, 32], and which an exact solution must take into account.

From an analytic point of view, keeping the correlations, the problem rapidly becomes
intractable and we are forced to make some approximations.

One can see how correlations develop by expanding (9) in the limit of zero temperature
and strong coupling constantT � |hi | � Ji,j = J , which corresponds to rescaling near the
zero-temperature sinkO shown in figure 1. Rescaling by a factor ofb involves replacing an
element of volumebd by a single point in a renormalized space. Under these conditions the
spins within the volume element are rigidly aligned and the rescaled field variance must be
given simply by fluctuations of the random field within the volume element,h′ = bd/2h. In
our case (b = 2, d = 1) the random fieldshi, hi+2 . . . from the decimated spins are shared
between two different sites (i − 1 andi + 1, i + 1 andi + 3 . . .). The new fields are of the
form h′i+1 = hi+1+(hi+hi+2)/2 but with correlations between fieldsh′i±1 on adjacent sites.
If the correlations that develop on rescaling are neglected, the field variance for the rescaled
element is given byh′ = √3/2h: less than the value

√
2h imposed by dimensionality. That

is, without these correlations the fluctuations of the random field are smoothed over and
their effect is implicitly underestimated. We propose taking the correlations into account in
a phenomenological manner by replacingHi+1,−1 + Hi+1,+1 in equation (9) by 2Hi+1,−1,
as shown in figure 2, wherebyh′i+1 depends onhi and hi+1 but no longer depends on
hi+2. If the fields are repartitioned as proposed above, one immediately finds an upper
bound for the renormalized field,h′i+1 = hi+1 + hi , which gives the correct field variance
h′ = √2h.

Returning to the full problem, with couplings and random field, we make a further
approximation of replacingJi,j on the right-hand side of equation (9) by the first moment of
the distributionJ = Ji,j evaluated at the previous iteration. This series of approximations is
best testeda posteriori, however, we remark here that this approximation does not decouple
the ferromagnetism from the disorder: rather there remains a strong interaction between the
two sets of parameters through the equations forJ ′ andHi,σ . Several groups have followed
the development of the distribution of coupling constants using stochastic Migdal–Kadanoff
algorithms [31, 32, 29]. They find a tail in the distribution at smallJi,j , correlated with
large values ofhi + hj [31, 32]. However as our results compare favourably we conclude

Figure 2. Field-moving approximation on the 1− d chain: (a) shows the exact partition, (b)
shows the approximation used in the calculation.
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Figure 3. Symmetric Migdal–Kadanoff bond-moving scheme, in two
dimensions. Bonds are displaced from the dotted to the double curves
and the central spin (open circle) is decoupled. The fieldshi on the
decoupled sites are placed on one of the four sites,k, with probability
P = 1

4 .

that the main characteristics of the RFIM are given by the interaction between the mean
ferromagnetic coupling and the random fields.

We move from one to higher dimensions using the Migdal–Kadanoff bond-moving
algorithm [30], which is described in more detail in appendix A. Our symmetric scheme,
which lends itself well to analytic work, is shown in figure 3 in two dimensions. Bonds are
moved from the centre to the edges of ad-dimensional cube of side 2. What remains is a
series of one-dimensional links, of bond strengthαdJ : αd = 2d−1, which can be decimated
using the one-dimensional equations, once the random fields have been correctly dealt with.

In two dimensions the procedure leaves a random field stranded on the decoupled spin
in the centre of the cell. In the renormalization all 2d field elements must contribute to
the single point in the new space and so the stranded field must be repartitioned onto the
neighbouring participating sites. How this repartition is done is rather arbitrary.

One possibility, which has been used in the renormalization of theXY model in the
presence of crystal fields [33] and in numerical renormalization of the RFIM [29], is to
divide the central field,hi , equally between thek nearest-neighbour sites. However, this
field partitioning again leads to correlations between fields on renormalized sites, which if
neglected would lead to a smoothing over the random-field fluctuations. In this case the
total field on one of thek sites would beh∗k = hk + (hi1 + hi2)/4, wherehi1 and hi2
are the stranded fields from two neighbouring cells. As in one dimension, if we consider
dimensional arguments for the random fields, valid near the zero-temperature sinkO, we
find a field variance on the sitek h∗2 = 9/8h2. Each cell effectively contains two sites of
type k plus a corner site (see appendix B), which gives a total field variance for a point in
the renormalized spaceh′ = √13/2h, while dimensional analysis demands that the upper
bound ish′ = 2h.

We propose an alternative partition scheme that preserves this upper bound forh′:
rather than divide the field into equal parts, we place the entire field on any one of the
nearest-neighbour sites with probabilitypk = 1/k = 1

4, as shown in figure 3. As the fields
are not divided up, no correlations develop between spins on neighbouring sites. In the
two-dimensional example under consideration, as the sitek can receive a field from either
of the two cells the total fieldh∗k is either the original field only, the sum of two fields,
or of three fields, with probabilitiesP = 9

16, 3
8, or 1

16 respectively. The variance of the
distribution for the field on sitek is therefore(h∗)2 = 3/2h2. This gives the total field
varianceh′2 = h2+ 2(h∗)2 = 4h2 as required.

The procedure also works in three dimensions. Here there are stranded fields at the
centre of the cubic cell and in the centre of the cube faces (see appendix B). Moving the
central field to one of the faces and then the fields from the faces to the sites to be decimated,
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which are on the edges of the cube, one finds(h∗)2 = 7/3h2. This is a tedious calculation
and rather than go into details, in the appendices we present a formal generalization to
d-dimensions which yields the result:

(h∗)2 = 2d − 1

d
h2. (10)

Our new partitioning might be called a random-phase approximation, compared with the
mean-field approximation proposed in [33]. Both work equally well for non-disordered
systems as they satisfy a minimum requirement of contributing 2d field terms for the new
point in the renormalized space. We emphasize, however, that with our choice for the
field partitioning our calculation takes into account the random-field fluctuations correctly,
without the need to follow the development of complicated correlations. With it we predict
dl = 2, in agreement with Imry–Ma arguments. For any field partition that underestimates
the random-field fluctuations, while at the same time neglecting the induced correlations
between fields and coupling constants one finds 1< dl < 2.

This is a general result: smoothing over the field fluctuations givesh′ = 2d/2−σ h, σ > 0,
[16], even for the above dimensional analysis. In the pure system we haveJ ′ = 2d−1J †
which, atdl , is put equal to the field term in the Imry–Ma argument. Ifσ > 0, as in the
mean field distribution [33], we finddl < 2. One can in fact work backwards, imposing
Imry–Ma at the outset and arriving at equation (10) in the approximation where theJi,j are
constant.

We are now finally in a position to apply the bond-moving scheme: we replaceJ

by αdJ , αd = 2d−1, on the right-hand side of equations (9). We then average the terms
involving J andhi over a field distribution with varianceh∗. Ourd-dimensional decimation
equations read

J ′ = 1

2β

∫ ∞
−∞

dt P (t) log
coshβ(2αdJ + t)

coshβt

h′2 = h2+ d

4β2

∫ ∞
−∞

dt P (t) log2 coshβ(2αdJ + t)
coshβ(2αdJ − t)

h′0 = h0+ d

2β

∫ ∞
−∞

dt P (t) log
coshβ(2αdJ + t)
coshβ(2αdJ − t)

P (t) = 1√
2πh∗

exp− (t − h
∗
0)

2

2h∗2
h∗0 =

2d − 1

d
h0.

(11)

The renormalization flows given by equation (11), in three dimensions, are shown in figure 4.
The zero-field fixed point is unstable to disorder and the ferromagnetic and paramagnetic
phases are separated by a critical line, with all trajectories near the phase boundary flowing
towards the zero-temperature fixed point. The valueωc and the critical exponents can be
found by expanding the equations (11) atT = 0.

† Note thatd−1 is the value ofy close to the zero-temperature sink of the pure system. Near the zero-temperature
fixed point the dimensional analysis givesy = d/2 (see section 4). This is due to a duality transformation between
h andJ asT → 0.
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Figure 4. Flow diagram, in three dimensions using equations (11). The open circles give the
values of the parameters on successive applications. The dotted curves are a guide to the eye.

After some tedious manipulation we find

J ′ = αdJφ(ω∗/
√

2αd)

ω′2J ′2/J 2 = ω2{1+ (2d − 1)erf(αd
√

2/ω∗)} + 4dα2
d{1− erf(αd

√
2/ω∗)}

−2

√
2

π
dαdω

∗ exp

(
−2α2

d

ω∗2

)
h′0 = h0{1+ (2d − 1)erf(αd

√
2/ω∗)}

φ(x) = 2
∫ 1/x

0

dt√
π

exp(−t2)(1− xt)

(12)

where erf(x) is the error function andω∗ = h∗/J . The functionφ(ω) is positive forω > 0,
it decreases asω increases, and is contained within the interval [0, 1].

Eliminating J and J ′ in equations (12) and settingω = ω′ = ωc we find an implicit
equation for the critical field which can be solved numerically. We recuperate the correct
lower critical dimension,dl = 2 by settingωc = 0. Putting equations (3) and (12) equal
and linearizing with respect toh0, τ = T/J andδω, whose equation takes the form

2α2
dωcφ

2
c δω

′ =
{
−
√

2pαdω
2
cφcφ

′
c −

4√
π

√
2dpαd exp

(
− 2α2

d

p2ω2
c

)
+ 2ωc

[
1+ dp2erf

(√
2αd
pωc

)]}
δω (13)
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we solve numerically forx, y, z in d dimensions. Near the trivial fixed pointO, our scheme
reproduces the correct limiting values,x → d, y → d − 1 as well as the correct scaling of
the random fields discussed in detail above.

3. Results in three dimensions

In three dimensions we findωc = 1.956, and using the scaling relations for the RFIM,
which can be derived from (4) [24]

ν = 1/z 2− α = (d − y)ν β = ν(d − x)
γ = (2x − y − d)ν δ = (x − y)/(d − x)
η = d + 2+ y − 2x η = d + 4− 2x.

(14)

We find the following complete set of exponents in three dimensions

x = 2.991 y = 1.491 z = 0.449 ν = 2.23

α = −1.360 β = 0.02 γ = 3.318 δ = 167

η = 0.510 η = 1.019 η − 2η = −0.002

(15)

which can be compared, in table 1, with other values found in the literature.
Our results are in very close agreement with stochastic Migdal–Kadanoff renormalization

results [31, 32, 29]. The values ofη andη quoted are the same as ours within their numerical
errors, as are the values ofν, α andβ found in [31, 32]. The numerical values of Berker
et al [31, 32] are particularly precise and our agreement with their results is so good as to
suggest that the details of the methods are related. In appendix A we discuss the various
Migdal–Kadanoff schemes and the problems that field terms present. We conclude that
our bond- and field-moving procedures are the correct logical steps that map the RFIM
from the cubic lattice to the hierarchical necklace lattice used for the renormalization in
[31, 32]. Further, the excellent agreement justifies the approximation shown in figure 2,
to deal with the correlations that develop between the random fields on renormalization, at
least within the Migdal–Kadanoff approximation. We can therefore expect that our analytic
technique will incur errors characteristic of the Migdal–Kadanoff method but will not lead
to inconsistences over and above this.

There is almost universal agreement in the literature on the values ofη, η andβ. In
Monte Carlo simulation on the RFIM [21] one findsη = 0.56±0.03, η = 1.00±0.06, β = 0,
while simulations on a diluted antiferromagent in the presence of a constant magnetic field

Table 1. Estimates of the critical exponents of the RFIM.

Reference η η ν β α γ

Present work 0.510 1.019 2.23 0.02 −1.360 3.318
[31] 0.51 1.02 2.25 0.02 −1.37
[32] 0.51 1.02 2.25± 0.01 0.02± 0.0005 −1.39± 0.016
[29] 0.56 1.0 2.1±0.2
[21, 35] 0.56± 0.03 1.0± 0.06 1.6± 0.3 0.0± 0.05 −1.0± 0.3 2.3± 0.3
[14] 0.5 1.0 1.3 0 2.0± 0.5
[34] 1.1 0.05
[28] 2.1± 0.2
[15] 0.25 1.31, 1.75
[36] -1.0
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[14] yield η ≈ 0.5, η ≈ 1.0, β ≈ 0. Finally, from exact ground-state calculations Ogielski
[34] predictedη = 1.1, β = 0.05. The experimental evidence could point towards a smaller
value ofη: for example Belangeret al [15] would find a value ofη ≈ 0.25 by using the
scaling relations, however, the errors on the measurements are large.

The reason why these exponents are all so similar despite widely ranging techniques
and approximations is that the deviation from the values given by simple dimensional
arguments is small. Dimensional arguments give the boundsx 6 d, y 6 d/2 and
z 6 d/2− 1 (see section 4). If the deviation from these bounds is really so small, then any
correctly implemented procedure should give accurate results. We find that the deviation is
particularly small forx and to a lesser extent fory. Judging from the literature this appears
to be universally true and with four different procedures giving similar small values for the
magnetization exponent we begin to get an established picture of the random field disorder
driving the transition to the limit of being first order.

There is much more variation in the literature for the exponents that depend principally
on the third eigenvaluez, namelyν, α andγ . Experimentallyν ≈ 1.0 [15]. Our calculation
predictsν ≈ 2.25, while Monte Carlo predictsν = 1.6 ± 0.3 [35] and ν = 1.3 [14]
and the optimization scheme of Ogielskiν = 1.0. It is typical of the Migdal–Kadanoff
approximation that it overestimates the value ofν: for example in a pure three-dimensional
Ising model one findsν = 1.064 compared with the experimental result ofν = 0.64. We
can therefore be confident in assuming that our value is too large. In fact, if the true value
is less that 2 it would mean thatz is greater than the dimensional resultz = d/2− 1 which
would be in contrast to that which we find from theε expansion in section 4.

The large value ofν gives us a large value ofγ and a strongly negative value ofα.
Other values ofγ are experimental:γ = 1.31± 0.03 and 1.75± 0.2 [15], numerical:
2.0± 0.5 [14] and 2.3± 0.3 [35], 2.0 from the Casher–Schwartz renormalization scheme
[29] and 2.1±0.2 [28] from series expansions. The largest variations come in the values of
α, here the predicted values vary in sign which completely changes the observable physical
phenomenon the exponent describes. Ogielski [34] predicted a positive value, while Monte
Carlo givesα 6 0 [14] andα = −1.0± 0.3 [35]. Experimental results do not show a
divergence in the specific heat and the cusp observed has been fitted withα 6 0 in the case
of FexZn1−xF2 [9, 10] andα = −1.0 for FexMg1−xBr2 [36]. It could therefore be that the
Monte Carlo simulation results are fairly close to the truth. However, as the experiments and
Monte Carlo suffer from exponentially long relaxation times they might both be measuring
non-equilibrium phenomena. Puttingα ≈ 0 in the scaling relation, and using our value of
y givesν ≈ 4

3, which is perhaps a reasonable estimate.

4. Expansion inε = d− 2

We gain more insight into the general trends for the exponents by expanding analytically
in powers ofε = d − 2, where to first order inε we recover the analytic results of Cao and
Machta [31].

x = d = 2+ ε y = d/2= 1+ ε/2 z = d/2− 1= ε/2. (16)

These differ slightly from the first calculation by Bray and Moore [24], as one findsν = 2/ε,
compared with their value ofν = 1/ε. To orderε we therefore findη − 2η = 0 and two
independent parameters only.
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The leading corrections to equations (16) are exponentially small in 1/ε2 [24, 31]. To
see this we first write

erf

(
1

r

)
' 1− r√

π
exp

(
− 1

r2

)[
1− r

2

2
+ 3r4

4

]
φ(r) ' 1− r√

π
+ r√

π
exp

(
− 1

r2

)[
r2

2
− 3r4

4

]
φ′(r) = − 1√

π

[
1− exp

(
− 1

r2

)] (17)

where

r ≡ pωc√
2αd
� 1 p2 = 2d − 1

d
. (18)

We can calculater as a function ofε using (12) and settingω = ωc. After some calculation
we obtain

r =
√
π log 2

2
ε + · · · . (19)

Putting this into (13) yields

δω′ ' 2d/2−1

(
1− 3

2
√
πr

exp

(
− 1

r2

))
δω (20)

and therefore

z = ε

2
− 3

πε log2 2
exp

(
− 4

πε2 log2 2

)
+ · · · . (21)

Similarly, using the first of equations (12)

y = d − 1+ 1

log 2
logφ(r). (22)

We remark that, in the absence of random fields, we findy = d − 1, as one expects for a
perfectly ordered pure system. However, this is not the correct result as one approachesdl
from above. As one flows along the separatrice from the thermal to the random-field fixed
point there is an inversion of the roles played byh and byJ : a dualityh ↔ J with the
result that the dimensional arguments givey = d/2 and notd−1. In effect, the eigenvectors
of the renormalization group applied at the thermal and random-field fixed point are related
nonlinearly, which leads to this inversion [37]. Physically this inversion may come from
the roughening of domain walls [38]. It is the reason why the exponenty describes how
the width of the field distribution grows in stochastic Migdal–Kadanoff procedures [31].

This inversion falls out of a development of log(φ), taking care to include subsequent
terms from (19). Alternatively one can expandφ2 directly in (12) arriving at the result

y = 1+ ε
2
− 3ε

8
exp

(
− 4

πε2 log2 2

)
+ · · · . (23)

Similarly, using the expansion for the error function erf(1/r) we find

x = 2+ ε − 3ε

8
exp

(
− 4

πε2 log2 2

)
+ · · · . (24)

Using the scaling relations (14) the correctedx, y, z give

β = 3

4
exp

(
− 4

πε2 log2 2

)
+ · · · . (25)
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However, to this order the differencēη − 2η is still zero and to find the non-zero term we
have to push further. We can write the expressions forx andy

x = d − (1− 2−d)
r√

π log 2

(
1− r

2

2

)
exp

(
− 1

r2

)
+ · · ·

y = d

2
− (1− 2−d)

r√
π log 2

(1− r2) exp

(
− 1

r2

)
+ · · ·

(26)

and after some final manipulation we arrive at the result

η̄ − 2η = −3πε3 log2 2

32
exp

(
− 4

πε2 log2 2

)
. (27)

These analytic results confirm the consistently small values in the literature. Dimensional
analysis predictsβ = 0, η−2η and so two independent exponents only. We find corrections
to this analysis, which are exponentially small inε. As discussed in the previous section,
this appears to be a reasonable representation of the truth for the eigenvaluesx and y,
but there is experimental, theoretical and numerical evidence to suggest that the variation
is much bigger for the eigenvaluez. Further, the deviation,z > ε/2, appears to be in
disagreement with equation (21).

All numerical work gives the Schwartz–Soffer inequality satisfied as an equality
[31, 29, 28, 21] within the numerical errors and from series expansions one finds 2η = η in
d = 3, d = 4 andd = 5 [28]. This is in disagreement with the replica calculation in [27],
where a solution withη− 2η < 0 is predicted with values lying in a narrow range close to
zero. In our scheme, which does not suffer from statistical error, we are able to quantify
the inequality. With this exponential dependence, our results are consistent with both the
high-precision series expansion, and the replica calculation, although we remark also that
we may simply have a measure of the extent to which the Migdal–Kadanoff approximation
fails.

In figure 5 we showη and η, together withη − 2η versusd, calculated numerically
using the procedure outlined in section 3. In contrast to the series expansion, the difference,
η−2η, begins to grow betweend = 3 and 4. This could indicate a continuous development
towards the ‘dimensional reduction’ resultη = η at d = 6 [27]. Howeverη andη do not
fall smoothly towards zero as one approachesd = 6, rather they reach minimum values
betweend = 4 andd = 5. This indicates the breakdown of the Migdal–Kadanoff scheme
at higher dimension, as one might expect from results on the pure system.

5. Crossover from pure to random-field behaviour

The RFIM is subject to the phenomenon of crossover as the random-field varianceh is a
relevant variable at the critical point of the pure system [39]: take a renormalization flow
in the dimensionless parametersτ andω starting close to the thermal critical pointτC . The
small parameters aret = (τ − τC)/ andω2, with ω2 � |t |. With these starting conditions
the disorder has little effect at small length scales and the system behaves as in zero field.
As it is relevant,ω grows with changing length scale and when the two parameters are
of the same order of magnitude the behaviour changes rapidly to that of the random-field
fixed point atτ = 0. This can be seen qualitatively in figure 4 by considering the flows
close to the separatrice joining the two fixed points. The points represent the evolution after
repeated rescaling byb = 2. One can see that the evolution between the two asymptotic
regions occurs in just a few iterations. This abrupt change is the crossover effect which
occurs at a well-defined length scaleξd .
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Figure 5. Exponentsη, η and the differenceη − 2η against dimensiond.

A crossover exponent can be calculated from the application of the linearized
renormalization group on the two-dimensional space of variablesµ = (τ, ω2) near to the
thermal critical point

δµ′ = RLb δµ. (28)

RLb can be calculated from equations (11). It is directly diagonalized by variablest andω2,
with orthogonal eigenvectorseτ andeω2 along and perpendicular to the temperature axis of
the phase diagram. Equation (28) can then be written

δµ′ = tbyτ eτ + ω2byω2eω2

= tbyτ
(
eτ + ω

2

t
byω2−yτ eω2

)
(29)

whereyτ andyω2 are the two independent exponents. Fixingtbyτ = 1 we finally write

δµ′ = eτ + ω2/tyω2/yτ eω2 (30)

from which we define the crossover exponentφ ≡ yω2/yτ . The effect of the disorder is
contained in the termω2/|t |φ . If it is small, thermal fluctuations dominate while when large
the disorder dominates. The singular part of the free energy will therefore have the form
[2, 40, 41]

F(t, ω2) = |t |2−αg(ω2/|t |φ). (31)

It has been shown, for the RFIM, where along the temperature axis there is no disorder
that φ should be equal to the susceptibility exponent,γ0, for the pure system [40, 41].
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Dimensional arguments give for both exponents

γ0, φ 6
d

d − 1
. (32)

The equality does not necessarily hold for the diluted antiferromagnet, as the dilution results
in disorder, even at zero field, leading to the inequality [41]

φ > γ0. (33)

Linearizing equations (11) we find

δτ ′ = αd tanh

(
2αd
τc

)
δτ

ω
′2 =

{
1+ (2d − 1) tanh2

(
2αd
τc

)}
ω2

(34)

from which we deduce

φ = yω2

yτ
= log{1+ (2d − 1) tanh2(2αd/τc)}
(d − 1) log 2+ log tanh(2αd/τc)

. (35)

We need a second exponent for the pure system in order to calculateγ0. We can calculate
yh0, the exponent giving the renormalization of the magnetic field, from the third of
equations (11) withh = 0:

yh0 =
1

log 2
log{1+ (2d − 1) tanh(2αd/τc)} (36)

from which, using the scaling relations for the pure system we find

γ0 = 2yh0 − d
yτ

(37)

and finally

φ

γ0
= log{1+ (2d − 1) tanh2(2αd/τc)}

2 log{1+ (2d − 1) tanh(2αd/τc)} − d log 2
. (38)

In three dimensions we findφ/γ0 = 1.1 with φ = 1.473 andγ0 = 1.326 which compares
remarkably well with experimental values [2]φ/γ = 1.1, with φ = 1.42± 0.02 and
γ0 = 1.31± 0.03 (see also [9]:φ = 1.40± 0.05). Such good quantitative agreement
is clearly rather fortuitous as the Migdal–Kadanoff procedure is known to be of limited
accuracy in its predictions for the pure system. For example developments inε = 4− d
give γ0 = 1.241± 0.004 [42]. However, these characteristic errors should cancel in the
ratio, making the predictions forφ/γ more reliable. One should also note that, as real
systems remain ergodic up to the crossover to random-field critical behaviour, thenφ is the
exponent characteristic of the RFIM which can be measured with the most confidence.

In figure 6 we show the evolution of the ratio with dimension. We see that inequality
(33) is satisfied for all dimensions, with the deviation from the equality growing rapidly
as one exceedsd = 2. We can quantify this deviation by developing equation (38) in
ε = d − 1. Correction terms are exponentially small in 1/ε

φ

γ0
= 1+ 1

log 2
exp(−4/ε)+ 2

log2 2
exp(−6/ε)+ · · · . (39)

We therefore have, rather unexpectedly, a result that is consistent with the diluted
antiferromagnet rather than our starting model, the RFIM. It is possible that the modification
occurs when displacing fieldsHi−1,1 at the one-dimensional stage of the rescaling process.
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Figure 6. Evolution of the ratioφ/γ0 versus dimensiond.

This step mixes bonds and random fields in an approximate manner, compared with the
exact decimation and must introduce an implicit random bond term even in the limit of the
field strength going to zero. It would be interesting to investigate this point further.

6. Discussion

The scaling relations (14) are equivalent to those of a pure system withd ′ = d − y, plus
a supplementary relationη = η + 2− y. It has therefore been proposed that dimensional
reduction should be modified in the light of this third exponent [23, 24] and that one could
find the exponents of a pure Ising model in dimensiond ′ = d − y. There is no proof of
this, that is there is noa priori reason why the universality class of the reduced system in
dimensiond ′ should be that of the Ising model.

In the absence of a proof, our calculation allows us to test the modified dimensional
reduction systematically in powers ofε and it is easily shown to hold to first order: in
dimensiond ′ the exponentν0 for the pure Ising system is defined by the transformation

|t ′| ∼ b1/ν0|t | t = (T − TC)/TC (40)

with 1/ν0 ≈ d ′ − 1 as one approaches the lower critical dimension. Definingd ′ = d − y =
2+ ε− (1+ ε/2) = 1+ ε/2 we findν0 = 2/ε, in agreement with (16). A second exponent
can be calculated to the same order by, for example, using the scaling relations (14) and the
values (16) from which we findγ0 = d ′/(d ′ − 1) which corresponds to the Ising exponent
in dimensiond ′ to this order of approximation (see equation (32)).
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One could test to higher order inε, within the Migdal–Kadanoff procedure, by solving
the equations for the pure system in dimensiond ′

t ′ = αd ′ tanh(2αd ′Kc)t

Kc = 1
2 log tanh(2αd ′Kc)

(41)

with d ′ = 1+ ε/2+O(exp(−1/ε2)) defined from equation (23) fory.
Recently Jolicoeur and Le Guillou [43] applied an extrapolation of the exponents of the

pure model between the critical dimensions 1 and 4 to a reduced dimension in the range
d ′ ∼ 1.5, corresponding to the consensus in the literature givingy ≈ d/2. They find that
the ensemble of exponents quoted in the literature are well represented by their predictions.
All of this points to the fact that modified dimensional reduction may rigorously hold. In
this case, the only unknown parameter for the complete identification of the exponents for
the RFIM, would bey and there is now considerable evidence to suggest that this is given to
a good approximation byy ≈ d/2. This method [43] may well therefore represent the best
approximation for the exponents of the RFIM at the present time, although the agreement
with Monte Carlo is based on the assumption that true equilibrium exponents were extracted
from the simulations. Both experiment and simulation face the same problem, that loss
of equilibrium is guaranteed as one approaches asymptoticallyTC , with the result that one
measures, either in equilibrium, in a subcritical regime, or non-equilibrium exponents closer
to TC [35, 44]. In either case this could lead to an under estimate for the exponentν (see
discussion in [21]). More analytical approaches are clearly needed if this point is to be
clarified further.

The exponentially small corrections to the values forx = d, y = d/2, z = d/2− 1
have been predicted from energetic arguments [24, 31]. In the case of a magnetic field, if
all spin are parallel, the renormalized field scales asbd andx = d. As one approachesdl ,
ωc approaches zero and the probability of finding a net random field large enough to turn
the spins against the local magnetization direction is exponentially small in 1/ω2

c . The first
correction to the value ofx is therefore of this order and from the analysis of section 5,
it follows that ωc ∼ ε . . .. Similar arguments apply for the corrections toy, but they are
complicated by the fact thaty approachesd/2 and notd − 1 in this limit. This duality
between the magnetic coupling and the random field is possibly due to the domain wall
roughening and is a key feature of the critical behaviour of the RFIM.

In the case of the eigenvaluez we again predict an exponentially small correction to
the linear expression. However, as we have discussed, there is evidence in the literature
to suggest that it is actually much larger and the correct behaviour forz remains an open
question.
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Appendix A

In figure A1 we show the Migdal–Kadanoff [30, 33] bond-moving procedure for a square
and a cubic lattice, in the absence of fields. Bonds are moved sequentially to provide a
series of one-dimensional paths which can be decimated exactly. The process breaks the
lattice symmetry: depending on the direction, one finds either a multiple series of 2d−1
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Figure A1. Migdal–Kadanoff bond-moving procedure in two and three dimensions. Single,
double and quadruple lines correspond to coupling strengths ofJ , 2J and 4J respectively.

paths all with initial coupling strengthJ , a single path of strength 2d−1J , or an intermediate
number of paths such that the sum of the couplings is again of order 2d−1J . Details, such
as the critical temperature depend on which axis is followed in the renormalization flow,
although one finds the same values for the exponents, as long as the renormalized bonds
consist of 2d−1 contributions with strength of orderJ .

Renormalizing along a single direction only corresponds to renormalization on a
hierarchical structure, with microscopic bond elements equal to one of the path types shown
in figure A1, after the application of the bond moving scheme. Examples can be found in
the literature of renormalization, either on the multiple path hierarchy [45, 47] or on the
single path, of necklace hierarchy [31, 32, 46].

In the presence of field terms, however, Migdal–Kadanoff renormalization is rather an
arbitrary business. A minimum condition for the renormalized cell is that it contains 2d

field contributions. This poses a problem when moving from the cubic to the hierarchical
structure, as the number of sites in the renormalized cell is not conserved and renormalization
takes place in a non-Euclidean space. In studies of the RFIM on the necklace hierarchy
[24, 31], the correct number of random field terms is explicitly imposed for each element
of the necklace. However, it is not clear how to arrive at this distribution, starting from
the hypercube and making a series of field-moving steps in parallel with the bond moving
shown in figure A1.

As discussed in the main text, the logical way of proceeding is a symmetric partitioning
scheme [33], with the fields on displaced sites being divided intod equal parts, with one part
being partitioned along each of thed-dimensions. This method seems to work satisfactorily
in the absence of disorder, but in the case of the RFIM it leads to correlations between the
renormalized fields [29], which cannot be treated analytically.

Our variation on the Migdal–Kadanoff renormalization scheme allows us to partition
the fields analytically, even in the presence of disorder. We keep cubic symmetry by, as a
first stage, moving bonds only, giving a single type of one-dimensional path in all directions
and leaving a series of disconnected spins (see figure 3). As a second stage, the random
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fields on the disconnected spins are partitioned using the stochastic algorithm discussed in
section 2 and detailed in appendix B. Our procedure appeares to give very similar results
to the numerical Migdal–Kadanoff renormalizations procedures on the hierarchical necklace
[31, 32].

Appendix B

The field partition can be readily generalized to ad-dimensional network. Fundamental
elements,Ad , of this network are shown in figure B1 ford = 1, 2, 3. The elementAd can
be generated fromAd−1 by the application of an operatorσ

σ(Ad−1) = Ad (B.1)

which duplicatesAd−1 at a distance 2a along the axisxd and places new sites of varying
type, sk, midway between the original and duplicated sites. For example, the elementA1

is constructed starting fromA0, which is a single site of types0. In the centre of the line
separating the two sitess0 one finds a site of types1. The operationσ2 producesA2 from
A1, placing a site of types2 between sites of types1 and sites of types1 between the
duplicated sites of types0. There are thusd + 1 different site labels froms0 on the vertices
of the cell, tosd at the centre. A sitesk can be found at the centre of the line joining two
sites of typesk−1.

There arend(k) = 2d−kCkd spins of typesk each of which carries a combinatorial weight
1/2d−k corresponding to the number of cells onto which it borders. For example ford = 1
the unitA1 contains one spin of type 1, with weight 1, and two spins of type 0, with weight
1
2, each spin of type 0 being shared by two different segments. The total number of spins
in the cell is therefore

nT =
d∑
k=0

nd(k)

2d−k
= 2d . (B.2)

Figure B1. Construction of elementsAd by application ofσ .
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In our procedure the local fields at sitessk, with k = d, d − 1, . . .2 are successively
repositioned on any one of the 2k sitessk−1 with probability

pk = 1

2k
(B.3)

until one reaches the spinss1. The probability that the field from a sitek contributes to the
total field at a sites1 is therefore

αk = pkpk−1 . . . p2.(number of paths connectingsk to s1). (B.4)

The number of paths can be calculated by considering the (k−1)-dimensional cube centred
arounds1 with verticessk. For example, there are two possible ways, in any dimension, of
moving from ans3 site ontos1 passing by one of two differents2 sites and one possible
way of passing from ans2 site to ans1 site. By recursion it therefore follows that there are
(k − 1)! paths in general, from which we find

αk = 1

2k−1k
. (B.5)

As the random fields are uncorrelated the total field variance for ans1 site is given by

h∗2 = h2

(
1+

d∑
k=2

αkv
d
k (s1)

)
(B.6)

wherevdk (s1) is the number of neighbours of typesk.
To obtain a general expression forvdk (s1) we first definevdk (sl) in the interval 06 l 6

k 6 d which satisfy the relations

vdk (sl) = vd−1
k−1(sl−1) = · · · = vd−lk−l (s0). (B.7)

The operatorσ generates the recursion relation

vd+1
k (s0) = vdk (s0)+ 2vdk−1(s0) (B.8)

with the initial conditionsvd0(s0) = 1 andvd1(s0) = 2d, the number of nearest neighbours
in d-dimensions.

We can then solve forvdk (s0) by introducing the set of(d + 1)-dimensional vectors
defined by

v0 = (1, 0, . . . ,0)

. . .

vk = (vk0(s0), . . . , vkk (s0), 0, . . . ,0)

. . .

vd = (vd0(s0), . . . , vdd (s0)).

(B.9)

The recursion relation can be written

vd = Rvd−1 = Rdv0

R = Id + 2U Ui,j = δi−1,j 16 i, j 6 d + 1.
(B.10)

By using the property thatUd+1 = 0 or by diagonalizingR, we find

Rd =


vd0(s0) 0 . . .

vd1(s0) vd0(s0) 0 . . .

. . .

vdd (s0) vdd−1(s0) . . . vd0(s0)

 (B.11)
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with elements

vdk (s0) = 2kCkd . (B.12)

From equation (B.7) we findvdk (s1) = 2k−1Ck−1
d−1. Putting this expression into equation (B.6)

and summing using the binomial relationCk−1
d−1/k = Ckd/d we finally arrive at our desired

result

h∗2 = 2d − 1

d
h2. (B.13)
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