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Abstract. We present an analytic real-space renormalization group calculation for the random-
field Ising model. We apply the Migdal-Kadanoff approximation for the renormalization of
a cubic cell in dimensiond, introducing a new field partitioning scheme which allows us to
treat the random-field fluctuations in a coherent manner. Our scheme leads naturally to a lower
critical dimensionalityd; = 2 and allows us to calculate a complete set of three independent
exponents in arbitrary dimension. In three dimensions the magnetization exg®rreri.02

and the Schwartz—Soffer inequality is almost satisfied as an equality. We expand analytically in
€ = d —2. Further, we show that and the magnitude of the inequality go to zero exponentially
with 1/e2. We calculate the crossover exponeit,from pure to the random-field system
and find surprisingly good agreement with experimental values. We findgtisattisfies the
Schwartz—Soffer inequalityp > yo, the susceptibility exponent of the pure system. We expand

in e =d — 1 and find that the magnitude of the inequality varies exponentially/én Einally

we find that dimensional reduction is satisfied to first ordee,iwith the reduced dimension

d =dJj2.

1. Introduction

The random-field Ising model (RFIM) is one of a number of model disordered systems that
has been intensively studied over the last two decades (for reviews see, for example [1-3]).
After much confusion a coherent picture of its behaviour is finally emerging.

The model is defined with the Hamiltonian

H=-JY 58— hs; S ==+1 6y
(i.)) i

where J is a ferromagnetic coupling constant & 0) and#; is a random field at site
which we take to have a Gaussian distribution

1 hi — hg)?
Plhi) =\ 5072 eXp<( 2h20) ) )

with mean valuégig and variancé:. In the following discussiortg is taken to be zero.

For a long time the main discussion centred around the value of the lower critical
dimension and the very existence of a phase transition in a physically realizable system.
The physical argument of Imry and Ma [4] in which the energy of a domain of Eite
minimized with respect to the wall energy, varying &6, and the random-field energy
varying asL?/?, givesd, = 2.
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Alternatively, a number of calculations based on series expansions of the free energy
[5—7] exposed a correspondence between the random field model in diméresimha pure
Ising system in dimensiod — 2. This result, known as ‘dimensional reduction’, therefore
givesd, = 3 and no finite temperature phase transition in three dimensions. This result
holds to all orders in the perturbation and appears to be rigorous. It was therefore perhaps
surprising to find convincing evidence of a transition from experimental realizations of the
RFIM [8] such as the diluted antiferromagnet.Ee;_,Cl, in magnetic field [9]. Subsequent
exact calculations showed that, for weak random fields, a magnetic phase is stable at
low temperatures [11, 12]. Numerical work confirmed the similarity between the diluted
antiferromagnets and the RFIM [13, 14] and it therefore rapidly became clear that there is
indeed a phase transition in three dimensions. Interest then passed, first to explaining why
the perturbation calculation is wrong and subsequently onto the details of the transition itself.

An explanation for these conflicting results lies in the apparition of metastable states in
the region of the transition and the development of a complex free energy surface for which
there is experimental [15], theoretical [16—18] and numerical [13, 19] evidence. Villain
[17] and Fisher [18] argued that in the critical region, the domain walls are not free to
meander continuously and without constraint over the sample. Rather, the random field
disorder constrains the domain walls to particular regions of space giving discrete preferred
paths. The discrete paths are separated by free energy barriers, which lead to domain wall
pinning, metastable domain wall configurations and exponentially long relaxation times.
The starting point for the perturbation calculations assumes a single minimum about which
the expansion of the free energy is made. If many minima exist, each should be taken into
consideration [17, 20]. The calculation of the correct Boltzmann weights for these minima
is not, at present, a feasible problem.

The complex structure of the free energy appears therefore to stabilize the magnetic
phase in three dimensions. It makes it, however, very difficult to measure details of
the transition as the exponentially long timescales guarantee loss of ergodicity and non-
equilibrium, or glassy behaviour, as one enters the critical region. The same problems arise
in numerical work [21], while in theoretical approaches the difficulty is found in averaging
correctly over the disorder. Despite these problems there is now a growing body of work
offering a coherent picture of the transition. It predicts it to be second order, driven almost
first order by the configurational disorder of the random fields.

In this paper we present an analytic real-space renormalization-group calculation using
the Migdal-Kadanoff technique which gives further weight to this picture. We present a new
series of approximations that allow us to deal with the random-field disorder in a consistent
manner, without recourse to the use of replicas. A preliminary account of this work can be
found in [22].

On renormalizing the length scale of the problem, the flow, in variablesl/K = T/J
and w = h/J are dominated by the ‘random-field’ or ‘zero-temperature’ fixed point at
7 =0, w = w., as shown schematically in figure 1. The zero-temperature fixed point is a
direct consequence of the metastability: the system becomes frozen by the random fields
with the result that the critical fluctuations in the system are due to the configurational
disorder of the random fields rather than thermal fluctuations [18]. It is the reason why
temperature?, is an irrelevant variable in the renormalization of the RFIM [24].

Close to the fixed point the renormalization equations for a change of bdake the
form

(ho/T) = b*(ho/T) U =b71 80 = b'sw

Sw=w— w,

©)
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Figure 1. Schematic flow diagram for the RFIM fat > d;. F marks the ferromagnetic phase
and P marks the paramagnetic phase.

with x, y andz all positive. At this point the divergent part of the free energy and correlation
length should take the form [24]

E=Jf@w, ho/J) @
§ =&0@w, ho/J).

At first sight one might therefore expect just two independent exponents. Howgver,
changes with length scale at the fixed point and therefong z are all implicated, despite
the temperature being irrelevant [23]: the rescaled quantities are

E' = Eb! =0’ Jf(b*8w, b ho/J)
£ =Eb L= £ Sw, b ho/ ).

An open question is therefore: are the three exponents independent? The supplementary
exponent results physically from a divergence in the susceptibility which is particular to a
zero-temperature fixed point: in reciprocal space, at small wave vector, the susceptibility at
the transition has the form

X (@) = [(SgS_q) — (S)(S_g)] ~ 1/g*" (6)

where S, is a spin at wave vectog, (...) represents a thermal average, and][a
configurational average over the disorder. In the pure system, where the driving force
is the thermal fluctuations,S,) = O at T¢, but here at the zero-temperature fixed point
the correlations are frozen in by the disorder and both terms in the expression for the
susceptibility are divergent. In fact they are more divergent than the difference between
them [2, 23] and one must define a disconnected susceptibility

x¥5(q) = [(Sg) (S—g)] ~ 1/g*" )

with exponent. If n and7 are independent then there is a third exponent which comes
from the remnants of thermal fluctuations and temperature plays the role of a dangerously
irrelevant variable [25]. Following the scaling relations for the RFIM (section 3), an effective
dimension can be definetl =d —2+6 =d — y with 6 =7 —n.

One can deduce limits for the value of the third exponent from the exact Schwartz—
Soffer inequality [26]:77 < 25 and the result corresponding to dimensional reductips:
[27]. These two extremes are therefore both consistent with two-parameter scaling. The

®)
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most reliable information concerning quantitative values comes from high-temperature series
expansions [28], where to 15th order if7L ones finds the inequality to hold as an equality,

7 = 2n, indicating that there could, after all, only be two independent exponents. However,
this is not entirely consistent with the results ofkéard and Young [27], who investigated

the question of replica symmetry breaking. The existence of metastable states and the
associated complex free energy brings to mind the multivalley free energy structure of replica
symmetry breaking in spin glasses [20]. Within a self-consistent screening approximation
and an expansion in/Iz, wherem is the number of spin components & 1 for the Ising
model), they show that the dimensional reduction reguit d — 2, 7 = n corresponds to a
replica-symmetric solution, which is unstable at the transition. They show further that the
stable solution has broken replica symmetry and pregiet?y < 0, with values lying in a
narrow range close to zero, but which they are unable to calculate. Other methods suggest
that [13, 19], as the correlation length diverges, the spin structures pinned by the disorder
become macroscopically large, while at the same time the transition rate between them falls
to zero [29]. From this one could conclude that the large scale and ‘frozen’ spin structures,
which occur in the region of the transition, translate to true replica symmetry breaking as
one approache®..

In the next section we present our one-dimensional decimation procedure and the
Migdal-Kadanoff procedure that allows us to move to higher dimension. In section 3
we present our results in three dimensions. We compare our findings, first with other
renormalization procedures and then with experimental and numerical results. In section 4
we expand analytically ia = d—2 and find that botiy—25 andg tend to zero exponentially
with 1/€2. In section 5 we discuss the crossover from pure to random field behaviour for
weak disorder and calculate the crossover exponeintarbitrary dimension. We are able
to compare this favourably with experimental results in three dimensions. Finally, we
give some discussion of our results in section 6. Further details of the Migdal-Kadanoff
procedure can be found in the appendices.

2. Migdal-Kadanoff renormalization

We begin with a decimation procedure for a one-dimensional chain, which we then
generalize to dimensions-using the Migdal-Kadanoff approximation. Throughout we
take the microscopic lattice constant to be unity. Evaluating the trace over alternate spins
on anN spin chain, the relevant part of the new partition function forNaf2 spin chain
can be expressed in the form

Zi1i41=38exXpBlJ]_1,;11Si-1Siv1 + hi_1Si—1 + b4 Siy1] (8)
wheref = 1/kpT ands is a constant. The transformations ffr , ;. , and#; in terms of
the initial variables are given by
o 1 og( coshB(Ji—1; + Jiit1 + hi) cOShB(Ji—1; + Jiiv1 — hi) )
LT 4 coshB(—Ji—1; + Jiiy1 + hi) COShB(Ji—1; — Jiiv1 + hi)
hia=hiy1+Hia 1+ Hipa 41
1 | <C05hﬂ(~]i+l,i+l+(r + Jit1ioitit2s + hi+1+(r)) (9)
4p

Hi10 =
coshB(Jitrit140 + Jititoit1420 — Nitivo)

+i o < coshB(Ji+1it1+o — Jititoititas + hitito) )
48 coshB(—Jit1it1to + Jittroitireo + hiv1es) )

The transformation does not maintain the initial conditions and after a single iteration the

initially constant exchange parameters develop random components. The;fiefdthe
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decimated site is shared between sitesl in the new space through;.; 11 and J,LLHI

which introduces correlations between fields: ;. , # 0 and between the new bonds and

fields: h;_yJ; 4,,1h; 1 # 0 [31, 32], and which an exact solution must take into account.
From an analytic point of view, keeping the correlations, the problem rapidly becomes
intractable and we are forced to make some approximations.

One can see how correlations develop by expanding (9) in the limit of zero temperature
and strong coupling constafit < |h;| <« J; ; = J, which corresponds to rescaling near the
zero-temperature sin® shown in figure 1. Rescaling by a factoriofnvolves replacing an
element of volume“ by a single point in a renormalized space. Under these conditions the
spins within the volume element are rigidly aligned and the rescaled field variance must be
given simply by fluctuations of the random field within the volume elemint b%/2h. In
our case§ = 2, d = 1) the random field#;, ;.. ... from the decimated spins are shared
between two different sites ¢ 1 andi + 1,7 + 1 andi + 3...). The new fields are of the
form i, = hiy1+(hi +hit2)/2 but with correlations between field$, , on adjacent sites.

If the correlations that develop on rescaling are neglected, the field variance for the rescaled
element is given by’ = /3/2h: less than the valug/2h imposed by dimensionality. That

is, without these correlations the fluctuations of the random field are smoothed over and
their effect is implicitly underestimated. We propose taking the correlations into account in
a phenomenological manner by replacifg.1 —1 + H;11.+1 in equation (9) by 2,1 _1,

as shown in figure 2, whereby; , depends om:; and h;,1 but no longer depends on
hiyo. If the fields are repartitioned as proposed above, one immediately finds an upper
bound for the renormalized field,  , = ;.1 + h;, which gives the correct field variance

h = /2h.

Returning to the full problem, with couplings and random field, we make a further
approximation of replacing; ; on the right-hand side of equation (9) by the first moment of
the distribution/ = J; ; evaluated at the previous iteration. This series of approximations is
best teste@ posteriori however, we remark here that this approximation does not decouple
the ferromagnetism from the disorder: rather there remains a strong interaction between the
two sets of parameters through the equations/faand H; ,. Several groups have followed
the development of the distribution of coupling constants using stochastic Migdal-Kadanoff
algorithms [31, 32, 29]. They find a tail in the distribution at smal}, correlated with
large values ofi; + h; [31, 32]. However as our results compare favourably we conclude

Higgp Wi HuaHisa
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B a0 Mg Wi
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Figure 2. Field-moving approximation on the4 d chain: @) shows the exact partitionb)
shows the approximation used in the calculation.
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Figure 3. Symmetric Migdal-Kadanoff bond-moving scheme, in two
‘ dimensions. Bonds are displaced from the dotted to the double curves
l and the central spin (open circle) is decoupled. The fiéglden the
5N
LA ‘& decoupled sites are placed on one of the four sitesyith probability
o= P=1

that the main characteristics of the RFIM are given by the interaction between the mean
ferromagnetic coupling and the random fields.

We move from one to higher dimensions using the Migdal-Kadanoff bond-moving
algorithm [30], which is described in more detail in appendix A. Our symmetric scheme,
which lends itself well to analytic work, is shown in figure 3 in two dimensions. Bonds are
moved from the centre to the edges of-@limensional cube of side 2. What remains is a
series of one-dimensional links, of bond strengfly: «; = 2¢~1, which can be decimated
using the one-dimensional equations, once the random fields have been correctly dealt with.

In two dimensions the procedure leaves a random field stranded on the decoupled spin
in the centre of the cell. In the renormalization afl feld elements must contribute to
the single point in the new space and so the stranded field must be repartitioned onto the
neighbouring participating sites. How this repatrtition is done is rather arbitrary.

One possibility, which has been used in the renormalization ofXtiemodel in the
presence of crystal fields [33] and in numerical renormalization of the RFIM [29], is to
divide the central fieldf;, equally between thé nearest-neighbour sites. However, this
field partitioning again leads to correlations between fields on renormalized sites, which if
neglected would lead to a smoothing over the random-field fluctuations. In this case the
total field on one of the sites would beh; = hy + (hi1 + hi2)/4, whereh;; and h;,
are the stranded fields from two neighbouring cells. As in one dimension, if we consider
dimensional arguments for the random fields, valid near the zero-temperatur® sink
find a field variance on the site h*2 = 9/8h2. Each cell effectively contains two sites of
type k plus a corner site (see appendix B), which gives a total field variance for a point in
the renormalized spadeé = +/13/2h, while dimensional analysis demands that the upper
bound ish’ = 2h.

We propose an alternative partition scheme that preserves this upper bouhd for
rather than divide the field into equal parts, we place the entire field on any one of the
nearest-neighbour sites with probabilipgy = 1/k = ;11, as shown in figure 3. As the fields
are not divided up, no correlations develop between spins on neighbouring sites. In the
two-dimensional example under consideration, as thekstan receive a field from either
of the two cells the total field:; is either the original field only, the sum of two fields,
or of three fields, with probabilitie® = 2, 3, or ;% respectively. The variance of the
distribution for the field on site is therefore(h*)?> = 3/2h%. This gives the total field
varianceh? = h? + 2(h*)? = 4h? as required.

The procedure also works in three dimensions. Here there are stranded fields at the
centre of the cubic cell and in the centre of the cube faces (see appendix B). Moving the
central field to one of the faces and then the fields from the faces to the sites to be decimated,
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which are on the edges of the cube, one fifld2 = 7/3k2. This is a tedious calculation
and rather than go into details, in the appendices we present a formal generalization to
d-dimensions which yields the result:

d __
(h*)? = 271;12. (10)

Our new partitioning might be called a random-phase approximation, compared with the
mean-field approximation proposed in [33]. Both work equally well for non-disordered
systems as they satisfy a minimum requirement of contributih§je?d terms for the new
point in the renormalized space. We emphasize, however, that with our choice for the
field partitioning our calculation takes into account the random-field fluctuations correctly,
without the need to follow the development of complicated correlations. With it we predict
d; = 2, in agreement with Imry—Ma arguments. For any field partition that underestimates
the random-field fluctuations, while at the same time neglecting the induced correlations
between fields and coupling constants one findsd;, < 2.

This is a general result: smoothing over the field fluctuations gives2¢/>=?h, o > 0,
[16], even for the above dimensional analysis. In the pure system we Hawe2!-171
which, atd,, is put equal to the field term in the Imry—Ma argument.olt- 0, as in the
mean field distribution [33], we find, < 2. One can in fact work backwards, imposing
Imry—Ma at the outset and arriving at equation (10) in the approximation wherg jhare
constant.

We are now finally in a position to apply the bond-moving scheme: we replace
by ayJ, ag = 2?71, on the right-hand side of equations (9). We then average the terms
involving J and#h; over a field distribution with varianck*. Ourd-dimensional decimation
equations read

, 1= coshB(2ayJ + 1)
J _ﬁf dtP(t)IogThﬁt

h8(20qJ + 1)
2, d P loc? cos
W =h + / dr P(1)log coshﬂ(Zcde —1)

(11)
coshB(2ayJ + 1)
hy =ho+ — dt P(t)log —— "4 T
0=rfot 2p fm FP(nlog coshB(2ayJ — 1)
P(1) = 1 ex (t — h§)? h*—zd_lh
T Ve 0 2 o g "

The renormalization flows given by equation (11), in three dimensions, are shown in figure 4.
The zero-field fixed point is unstable to disorder and the ferromagnetic and paramagnetic
phases are separated by a critical line, with all trajectories near the phase boundary flowing
towards the zero-temperature fixed point. The valyeand the critical exponents can be
found by expanding the equations (11)7at= 0.

1 Note thatd — 1 is the value ofy close to the zero-temperature sink of the pure system. Near the zero-temperature
fixed point the dimensional analysis gives= d/2 (see section 4). This is due to a duality transformation between
handJ asT — 0.
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Figure 4. Flow diagram, in three dimensions using equations (11). The open circles give the
values of the parameters on successive applications. The dotted curves are a guide to the eye.

After some tedious manipulation we find
J' = agJ (0" /v 20q)
w?J?%)J% = 0?14 (2 — Derf(agv2/w*)} + 4da?{1 — erf(ayv/2/w*))

2 . 202

hy = ho{l+ (27 — Derf(ayv/2/0")}
d(x) =2 v exp(—12)(1 — xt)
(RVES

where ertx) is the error function and* = h*/J. The functiong (w) is positive forw > 0,
it decreases as increases, and is contained within the intervallp

Eliminating J and J’ in equations (12) and setting = o' = w. we find an implicit
equation for the critical field which can be solved numerically. We recuperate the correct
lower critical dimensiond, = 2 by settingw, = 0. Putting equations (3) and (12) equal
and linearizing with respect thy, T = T/J anddw, whose equation takes the form

4 2]
2050?80 = { — V2paylp.p, — ﬁ«/édpad eXp( - p2ad2>
o

c

+ 20, [1 + dpzerf<m>:| }30) (13)

pw.
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we solve numerically fox, v, z in d dimensions. Near the trivial fixed poidt, our scheme
reproduces the correct limiting values—~ d, y — d — 1 as well as the correct scaling of
the random fields discussed in detail above.

3. Results in three dimensions

In three dimensions we find, = 1.956, and using the scaling relations for the RFIM,
which can be derived from (4) [24]

v=1/z 2—a=(d-yyvw B=v(d—x)
y =@ —y—dy §=(x—y)/d—-x) (14)
n=d+2+y—2x n=d+4—2x.

We find the following complete set of exponents in three dimensions

x=2991  y=1491 =0449 v =223
«=-1360 =002 y=3318 §=167 (15)
n=0510 §=1019  7—25=—0.002

which can be compared, in table 1, with other values found in the literature.

Our results are in very close agreement with stochastic Migdal-Kadanoff renormalization
results [31, 32, 29]. The values pfandy quoted are the same as ours within their numerical
errors, as are the values of « and 8 found in [31, 32]. The numerical values of Berker
et al [31, 32] are particularly precise and our agreement with their results is so good as to
suggest that the details of the methods are related. In appendix A we discuss the various
Migdal-Kadanoff schemes and the problems that field terms present. We conclude that
our bond- and field-moving procedures are the correct logical steps that map the RFIM
from the cubic lattice to the hierarchical necklace lattice used for the renormalization in
[31, 32]. Further, the excellent agreement justifies the approximation shown in figure 2,
to deal with the correlations that develop between the random fields on renormalization, at
least within the Migdal-Kadanoff approximation. We can therefore expect that our analytic
technique will incur errors characteristic of the Migdal-Kadanoff method but will not lead
to inconsistences over and above this.

There is almost universal agreement in the literature on the valugsmfand 8. In
Monte Carlo simulation on the RFIM [21] one fings= 0.56+0.03, 77 = 1.00+0.06, 8 = 0,
while simulations on a diluted antiferromagent in the presence of a constant magnetic field

Table 1. Estimates of the critical exponents of the RFIM.

Reference n 7 ) B o y

Present work  0.510 1.019 2.23 0.02 —1.360 3.318
[31] 0.51 1.02 2.25 0.02 -1.37

[32] 0.51 1.02 2.25- 0.01 0.02+ 0.0005 —1.39+ 0.016

[29] 0.56 1.0 2.1+0.2
[21, 35] 0.56+ 0.03 1.0+£0.06 1.6+ 0.3 0.0+ 0.05 -1.0+0.3 2.3+ 0.3
[14] 0.5 1.0 1.3 0 2.6+ 0.5
[34] 1.1 0.05

[28] 214+0.2
[15] 0.25 1.31, 1.75

(36] -1.0
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[14] yield n =~ 0.5, 7 =~ 1.0, 8 ~ 0. Finally, from exact ground-state calculations Ogielski
[34] predictedy = 1.1, 8 = 0.05. The experimental evidence could point towards a smaller
value ofn: for example Belangeet al [15] would find a value ofy ~ 0.25 by using the
scaling relations, however, the errors on the measurements are large.

The reason why these exponents are all so similar despite widely ranging techniques
and approximations is that the deviation from the values given by simple dimensional
arguments is small. Dimensional arguments give the bounds d, y < d/2 and
7 < d/2—1 (see section 4). If the deviation from these bounds is really so small, then any
correctly implemented procedure should give accurate results. We find that the deviation is
particularly small forx and to a lesser extent for. Judging from the literature this appears
to be universally true and with four different procedures giving similar small values for the
magnetization exponent we begin to get an established picture of the random field disorder
driving the transition to the limit of being first order.

There is much more variation in the literature for the exponents that depend principally
on the third eigenvaluge, namelyv, « andy. Experimentallyy ~ 1.0 [15]. Our calculation
predictsv ~ 2.25, while Monte Carlo predicty = 1.6 + 0.3 [35] andv = 1.3 [14]
and the optimization scheme of Ogielski= 1.0. It is typical of the Migdal-Kadanoff
approximation that it overestimates the valuevoffor example in a pure three-dimensional
Ising model one finds = 1.064 compared with the experimental resultvo= 0.64. We
can therefore be confident in assuming that our value is too large. In fact, if the true value
is less that 2 it would mean thatis greater than the dimensional resul= d/2 — 1 which
would be in contrast to that which we find from theexpansion in section 4.

The large value ob gives us a large value gf and a strongly negative value of
Other values ofy are experimental:y = 1.31+ 0.03 and 175+ 0.2 [15], numerical:
2.0+ 0.5 [14] and 23 + 0.3 [35], 20 from the Casher—Schwartz renormalization scheme
[29] and 21+ 0.2 [28] from series expansions. The largest variations come in the values of
a, here the predicted values vary in sign which completely changes the observable physical
phenomenon the exponent describes. Ogielski [34] predicted a positive value, while Monte
Carlo givesa < 0 [14] ande = —1.0 £ 0.3 [35]. Experimental results do not show a
divergence in the specific heat and the cusp observed has been fittad @within the case
of Fe,Zn;_.F, [9, 10] anda = —1.0 for Fe.Mg,_,Br» [36]. It could therefore be that the
Monte Carlo simulation results are fairly close to the truth. However, as the experiments and
Monte Carlo suffer from exponentially long relaxation times they might both be measuring
non-equilibrium phenomena. Puttirg~ 0 in the scaling relation, and using our value of

y givesv =~ 2, which is perhaps a reasonable estimate.

4. Expansion ine=d — 2

We gain more insight into the general trends for the exponents by expanding analytically
in powers ofe = d — 2, where to first order im we recover the analytic results of Cao and
Machta [31].

x=d=2+c¢€ y=d/2=1+¢/2 z=d/2—1=¢/2. (16)

These differ slightly from the first calculation by Bray and Moore [24], as one fingd2/¢,
compared with their value of = 1/¢. To ordere we therefore find; — 2y = 0 and two
independent parameters only.
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The leading corrections to equations (16) are exponentially smalfdf [24, 31]. To
see this we first write

erf ! ~1-— 4 ex —l -1—r2+3r4
3 AV et W=Y R S
r r 1 re 3t
~1—- 4+ SR ) 17
P(r)~1 ﬁ+ﬁeXp< r2>[2 4} (17)
<1>/()——1 1-exp(~ 1)
D= m )]
where
P, , 29-1
= <1 = . 18
N p ¥ (18)

We can calculate as a function ot using (12) and setting = w.. After some calculation
we obtain

log 2
r:ﬁ%ﬁr..., (19)
Putting this into (13) yields
3 1
!~ /2—1 _ _
S ~ 24 (1 T exp< r2)> Sw (20)

and therefore

€ 3 4
= ———expl-———5= )+ 21
¢ 2 qelog?2 p( 71’62|ng2> + (21)

Similarly, using the first of equations (12)

1
y=d-1+ Iogzlog¢>(r). (22)

We remark that, in the absence of random fields, we find d — 1, as one expects for a
perfectly ordered pure system. However, this is not the correct result as one apprgaches
from above. As one flows along the separatrice from the thermal to the random-field fixed
point there is an inversion of the roles played /byand by J: a dualityz < J with the
result that the dimensional arguments give- d/2 and notd — 1. In effect, the eigenvectors
of the renormalization group applied at the thermal and random-field fixed point are related
nonlinearly, which leads to this inversion [37]. Physically this inversion may come from
the roughening of domain walls [38]. It is the reason why the expomedscribes how
the width of the field distribution grows in stochastic Migdal-Kadanoff procedures [31].

This inversion falls out of a development of I@g, taking care to include subsequent
terms from (19). Alternatively one can expagd directly in (12) arriving at the result

€ 3 4
=1l4+_-——exp|l—5= )+ . 23
y 27 8 p( ne2|0922> 23)
Similarly, using the expansion for the error function(&yf) we find
3e
=24+e— —expl——5= | + 24
¥EeteT g p< 71’€2|ng2> 9
Using the scaling relations (14) the corrected), z give
3 4
=-expl——)+---. 25
g 4 p( n62|0g22) (25)
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However, to this order the differenge— 2y is still zero and to find the non-zero term we
have to push further. We can write the expressionscfand y

—d—1-2d " (1—r2>ex (—1)+
X = W > p = o6

d r 1
=-—1-2% ——A-rHexp(-,

YT 2 ( )ﬁlogz( ) p( r2>+
and after some final manipulation we arrive at the result

37edlog? 2 4
— exp| — .
32 ( 7[62|0922>

These analytic results confirm the consistently small values in the literature. Dimensional
analysis predictg = 0, 77— 25 and so two independent exponents only. We find corrections
to this analysis, which are exponentially smallein As discussed in the previous section,
this appears to be a reasonable representation of the truth for the eigenvadunesy,
but there is experimental, theoretical and numerical evidence to suggest that the variation
is much bigger for the eigenvalug Further, the deviation; > ¢/2, appears to be in
disagreement with equation (21).

All numerical work gives the Schwartz—Soffer inequality satisfied as an equality
[31, 29, 28, 21] within the numerical errors and from series expansions one fjnds;an
d =3,d =4 andd =5 [28]. This is in disagreement with the replica calculation in [27],
where a solution with; — 25 < 0 is predicted with values lying in a narrow range close to
zero. In our scheme, which does not suffer from statistical error, we are able to quantify
the inequality. With this exponential dependence, our results are consistent with both the
high-precision series expansion, and the replica calculation, although we remark also that
we may simply have a measure of the extent to which the Migdal-Kadanoff approximation
fails.

In figure 5 we showp and7, together withy — 25 versusd, calculated numerically
using the procedure outlined in section 3. In contrast to the series expansion, the difference,
7 —2n, begins to grow betweeth = 3 and 4. This could indicate a continuous development
towards the ‘dimensional reduction’ resglt= n atd = 6 [27]. Howevern and7 do not
fall smoothly towards zero as one approaches 6, rather they reach minimum values
betweend = 4 andd = 5. This indicates the breakdown of the Migdal-Kadanoff scheme
at higher dimension, as one might expect from results on the pure system.

n—2n= (27)

5. Crossover from pure to random-field behaviour

The RFIM is subject to the phenomenon of crossover as the random-field vakidace
relevant variable at the critical point of the pure system [39]: take a renormalization flow
in the dimensionless parameter&ndw starting close to the thermal critical point. The

small parameters are= (r — t¢)/ andw?, with w? < |t|. With these starting conditions

the disorder has little effect at small length scales and the system behaves as in zero field.
As it is relevant,w grows with changing length scale and when the two parameters are
of the same order of magnitude the behaviour changes rapidly to that of the random-field
fixed point att = 0. This can be seen qualitatively in figure 4 by considering the flows
close to the separatrice joining the two fixed points. The points represent the evolution after
repeated rescaling by = 2. One can see that the evolution between the two asymptotic
regions occurs in just a few iterations. This abrupt change is the crossover effect which
occurs at a well-defined length scdle
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Figure 5. Exponents;, 77 and the difference — 2 against dimensiod.

A crossover exponent can be calculated from the application of the linearized
renormalization group on the two-dimensional space of variables (r, »?) near to the
thermal critical point

S’ = RES. (28)

R} can be calculated from equations (11). It is directly diagonalized by varialaied «?,
with orthogonal eigenvectors ande,. along and perpendicular to the temperature axis of
the phase diagram. Equation (28) can then be written

S =th e, + wlb¥re,
W2
s Fene) -

wherey, andy,. are the two independent exponents. Fixingr = 1 we finally write
S = er + 2/ tY? Ve, (30)

from which we define the crossover exponéent y,:/y.. The effect of the disorder is
contained in the terrv?/|¢|?. If it is small, thermal fluctuations dominate while when large
the disorder dominates. The singular part of the free energy will therefore have the form
[2, 40, 41]

F(t, 0% = 11> g(0?/|t]%). (31)

It has been shown, for the RFIM, where along the temperature axis there is no disorder
that ¢ should be equal to the susceptibility exponent, for the pure system [40, 41].
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Dimensional arguments give for both exponents
d
< 32
. ¢ < (32)
The equality does not necessarily hold for the diluted antiferromagnet, as the dilution results
in disorder, even at zero field, leading to the inequality [41]

¢ = yo. (33)
Linearizing equations (11) we find

20
5t = oy tanh( d) St

Tc

w?= {1+ (2 — 1 tani? (Zad>}a)2

¢

(34)

from which we deduce

o= Y _ log{1+ (2 — 1) tantf 20y /7.)} (35)
" y:  (d—1)log2+ logtanh2ay/z.)
We need a second exponent for the pure system in order to calggylate can calculate
Yne» the exponent giving the renormalization of the magnetic field, from the third of

equations (11) withh = O:

1
Yo = log2 log{1 + (2/ — 1) tanh2a, /7)) (36)
from which, using the scaling relations for the pure system we find
2yp, — d
yo="0"C (37)
YVt
and finally
log{1+ (2¢ — 1) tanif(2
¢ og{1+ (2! — 1) tank? (20, /7.)) (38)

vo 2log{l1+ (2¢ — 1) tanh2a,/7.)} — dlog 2’

In three dimensions we find/yo = 1.1 with ¢ = 1.473 andy, = 1.326 which compares
remarkably well with experimental values [3/y = 1.1, with ¢ = 1.42+ 0.02 and
yo = 1.31+ 0.03 (see also [9]:¢ = 1.40+ 0.05). Such good quantitative agreement
is clearly rather fortuitous as the Migdal-Kadanoff procedure is known to be of limited
accuracy in its predictions for the pure system. For example developmeats-id — d
give yo = 1.241+ 0.004 [42]. However, these characteristic errors should cancel in the
ratio, making the predictions fap/y more reliable. One should also note that, as real
systems remain ergodic up to the crossover to random-field critical behavioukp flsehe
exponent characteristic of the RFIM which can be measured with the most confidence.

In figure 6 we show the evolution of the ratio with dimension. We see that inequality
(33) is satisfied for all dimensions, with the deviation from the equality growing rapidly
as one exceedd = 2. We can quantify this deviation by developing equation (38) in
€ =d — 1. Correction terms are exponentially small ifel

10 1 exp 2 _
%_1+Iog2exp( 4/e)+|0922exp( 6/€)+---. (39)

We therefore have, rather unexpectedly, a result that is consistent with the diluted
antiferromagnet rather than our starting model, the RFIM. It is possible that the modification
occurs when displacing fieldg;_; ; at the one-dimensional stage of the rescaling process.
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Figure 6. Evolution of the ratiop/yp versus dimensiod.

This step mixes bonds and random fields in an approximate manner, compared with the
exact decimation and must introduce an implicit random bond term even in the limit of the
field strength going to zero. It would be interesting to investigate this point further.

6. Discussion

The scaling relations (14) are equivalent to those of a pure systemdivithd — y, plus
a supplementary relation = n + 2 — y. It has therefore been proposed that dimensional
reduction should be modified in the light of this third exponent [23, 24] and that one could
find the exponents of a pure Ising model in dimensidr= d — y. There is no proof of
this, that is there is na priori reason why the universality class of the reduced system in
dimensiond’ should be that of the Ising model.

In the absence of a proof, our calculation allows us to test the modified dimensional
reduction systematically in powers efand it is easily shown to hold to first order: in
dimensiond’ the exponenty for the pure Ising system is defined by the transformation

|t'] ~ b t=(T —Tc)/Te (40)

with 1/vg &~ d’ — 1 as one approaches the lower critical dimension. Defiding d — y =
24+e—(1+€/2) =1+¢€/2 we findvg = 2/¢, in agreement with (16). A second exponent

can be calculated to the same order by, for example, using the scaling relations (14) and the
values (16) from which we fingly = d’/(d’ — 1) which corresponds to the Ising exponent

in dimensiond’ to this order of approximation (see equation (32)).



100 J-Y Fortin ard P C WHoldsworth

One could test to higher order i within the Migdal-Kadanoff procedure, by solving
the equations for the pure system in dimension

t' = ag tanhay Kt

1 (41)
K. = ;logtani2os K,)

with d’ = 1 + €/2 + O(exp(—1/€?)) defined from equation (23) foy.

Recently Jolicoeur and Le Guillou [43] applied an extrapolation of the exponents of the
pure model between the critical dimensions 1 and 4 to a reduced dimension in the range
d" ~ 1.5, corresponding to the consensus in the literature givirrg d/2. They find that
the ensemble of exponents quoted in the literature are well represented by their predictions.
All of this points to the fact that modified dimensional reduction may rigorously hold. In
this case, the only unknown parameter for the complete identification of the exponents for
the RFIM, would bey and there is now considerable evidence to suggest that this is given to
a good approximation by ~ d/2. This method [43] may well therefore represent the best
approximation for the exponents of the RFIM at the present time, although the agreement
with Monte Carlo is based on the assumption that true equilibrium exponents were extracted
from the simulations. Both experiment and simulation face the same problem, that loss
of equilibrium is guaranteed as one approaches asymptotitallyvith the result that one
measures, either in equilibrium, in a subcritical regime, or non-equilibrium exponents closer
to T¢ [35, 44]. In either case this could lead to an under estimate for the expor(eet
discussion in [21]). More analytical approaches are clearly needed if this point is to be
clarified further.

The exponentially small corrections to the values fo=d, y = d/2,z =d/2—-1
have been predicted from energetic arguments [24, 31]. In the case of a magnetic field, if
all spin are parallel, the renormalized field scaledbsndx = d. As one approacheas,

w. approaches zero and the probability of finding a net random field large enough to turn
the spins against the local magnetization direction is exponentially smalkif The first
correction to the value of is therefore of this order and from the analysis of section 5,

it follows thatw. ~ €.... Similar arguments apply for the correctionsytpbut they are
complicated by the fact that approaches//2 and notd — 1 in this limit. This duality
between the magnetic coupling and the random field is possibly due to the domain wall
roughening and is a key feature of the critical behaviour of the RFIM.

In the case of the eigenvaluewe again predict an exponentially small correction to
the linear expression. However, as we have discussed, there is evidence in the literature
to suggest that it is actually much larger and the correct behaviour femains an open
guestion.
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Appendix A

In figure A1l we show the Migdal-Kadanoff [30, 33] bond-moving procedure for a square
and a cubic lattice, in the absence of fields. Bonds are moved sequentially to provide a
series of one-dimensional paths which can be decimated exactly. The process breaks the
lattice symmetry: depending on the direction, one finds either a multiple serie$ bf 2
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Figure Al. Migdal-Kadanoff bond-moving procedure in two and three dimensions. Single,
double and quadruple lines correspond to coupling strengtlls 8§ and 4/ respectively.

paths all with initial coupling strengtff, a single path of strengthf2'J, or an intermediate
number of paths such that the sum of the couplings is again of ofdéy 2 Details, such

as the critical temperature depend on which axis is followed in the renormalization flow,
although one finds the same values for the exponents, as long as the renormalized bonds
consist of 2= contributions with strength of ordef.

Renormalizing along a single direction only corresponds to renormalization on a
hierarchical structure, with microscopic bond elements equal to one of the path types shown
in figure Al, after the application of the bond moving scheme. Examples can be found in
the literature of renormalization, either on the multiple path hierarchy [45, 47] or on the
single path, of necklace hierarchy [31, 32, 46].

In the presence of field terms, however, Migdal-Kadanoff renormalization is rather an
arbitrary business. A minimum condition for the renormalized cell is that it contains 2
field contributions. This poses a problem when moving from the cubic to the hierarchical
structure, as the number of sites in the renormalized cell is not conserved and renormalization
takes place in a non-Euclidean space. In studies of the RFIM on the necklace hierarchy
[24, 31], the correct number of random field terms is explicitly imposed for each element
of the necklace. However, it is not clear how to arrive at this distribution, starting from
the hypercube and making a series of field-moving steps in parallel with the bond moving
shown in figure Al.

As discussed in the main text, the logical way of proceeding is a symmetric partitioning
scheme [33], with the fields on displaced sites being divideddrgqual parts, with one part
being partitioned along each of tledimensions. This method seems to work satisfactorily
in the absence of disorder, but in the case of the RFIM it leads to correlations between the
renormalized fields [29], which cannot be treated analytically.

Our variation on the Migdal-Kadanoff renormalization scheme allows us to partition
the fields analytically, even in the presence of disorder. We keep cubic symmetry by, as a
first stage, moving bonds only, giving a single type of one-dimensional path in all directions
and leaving a series of disconnected spins (see figure 3). As a second stage, the random
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fields on the disconnected spins are partitioned using the stochastic algorithm discussed in
section 2 and detailed in appendix B. Our procedure appeares to give very similar results
to the numerical Migdal-Kadanoff renormalizations procedures on the hierarchical necklace
[31, 32].

Appendix B

The field partition can be readily generalized tal-aimensional network. Fundamental
elements,A,, of this network are shown in figure B1 far= 1, 2, 3. The element4, can
be generated froml,_; by the application of an operater

o(Ai—1) = Ag (B.1)

which duplicates4,_; at a distance @ along the axisc,; and places new sites of varying
type, sy, midway between the original and duplicated sites. For example, the elefent
is constructed starting fronly, which is a single site of typey. In the centre of the line
separating the two siteg one finds a site of type;. The operatiors, producesA, from
Ai, placing a site of type, between sites of type; and sites of types; between the
duplicated sites of typgy. There are thug + 1 different site labels fromg on the vertices
of the cell, tos, at the centre. A sitg, can be found at the centre of the line joining two
sites of types;_;.

There aren, (k) = 2¢7*C* spins of types, each of which carries a combinatorial weight
1/2%-* corresponding to the number of cells onto which it borders. For examplé fod
the unit.4; contains one spin of type 1, with weight 1, and two spins of type 0, with weight
%, each spin of type 0 being shared by two different segments. The total number of spins
in the cell is therefore

Xd: ”d(k) v (B.2)
k=0
31
/—\
S 5
@ ————O————@
So 51
| !
! [
! Sz |
o, ? O ?
| |
! I

Figure B1. Construction of elementsl, by application ofo.
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In our procedure the local fields at sites with k = d,d — 1, ...2 are successively
repositioned on any one of th& Bitess;_1 with probability

1

- (B.3)

until one reaches the sping. The probability that the field from a sitecontributes to the
total field at a sites; is therefore

Qx = prPr-1-- - p2.(number of paths connecting to s;). (B.4)

The number of paths can be calculated by consideringithel(-dimensional cube centred
arounds; with verticess,. For example, there are two possible ways, in any dimension, of
moving from ans;z site ontos; passing by one of two different sites and one possible
way of passing from am, site to ans; site. By recursion it therefore follows that there are
(k — 1)! paths in general, from which we find

1

o = ﬂ (B.S)
As the random fields are uncorrelated the total field variance foy @ite is given by
d
n? = h2<1 + ) v (sl)) (B.6)
k=2

wherev,‘j(sl) is the number of neighbours of type.
To obtain a general expression fﬁﬁ‘(sl) we first definev,ﬁ’ (s;) in the interval 0< [ <
k < d which satisfy the relations

vl (s) = v{ "1 (sm) = -+ = v{T] (s0). (B.7)
The operator generates the recursion relation
vy H(s0) = v{ (s0) + 2v{_1(50) (B.8)

with the initial conditionSUg(so) =1 and vf(so) = 2d, the number of nearest neighbours
in d-dimensions.

We can then solve fop{(so) by introducing the set ofd + 1)-dimensional vectors
defined by

0 =(1,0,...,0)
vk = (vé(so),...,v’,j(so),o,...,0) (B.9)
v = (vg(so), R vff(so)).

The recursion relation can be written

vd — Rvd—l — Rde

o (B.10)
R:Id~|—2U U,-,j=8,-_1’j 1<l,]<d+l
By using the property that/¢+! = 0 or by diagonalizingR, we find
vg(so) 0 ..
Rd — vii(so) 061(50) 0 (Bll)

wiso) v y(50) ... vis0)



104 J-Y Fortin ard P C WHoldsworth

with elements
vl (s0) = 28Ch. (B.12)

From equation (B.7) we find{ (s;) = 2*-1C%~1. Putting this expression into equation (B.6)
and summing using the binomial relati«ﬂjj/k = CX/d we finally arrive at our desired
result

h2. (B.13)
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